Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171557, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460704

RESUMO

Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Animais , Suínos , Estudos Prospectivos , Reatores Biológicos , Tecnologia
2.
Sci Total Environ ; 912: 168809, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016543

RESUMO

The current study is focused on understanding the operational mechanism of an integrated constructed wetland-microbial fuel cell (CW-MFC) reactor emphasizing fecal coliform (FC) removal. Few studies are available in the literature investigating the inherent mechanisms of pathogen inactivation in a CW-MFC system. Raw domestic wastewater was treated in three vertical reactors, one planted constructed wetland (R1), one planted CW-MFC (R2), and one unplanted CW-MFC (R3). Spatial analysis of treated effluents showed a considerable amount of organics and fecal coliform removal at the vicinity of the anode in R2. Assessment of the microbial population inside all the reactors revealed that EABs (Firmicutes, Bacteroidetes, and Actinobacteria) were more abundant in R2 compared to R1 and R3. During the activity study, biomass obtained from R2 showed a maximum substrate utilization rate of 1.27 mg COD mgVSS-1 d-1. Kinetic batch studies were carried out for FC removal in all the reactors, and the maximum first order FC removal rate was obtained at the anode of R2 as 2.13 d-1 when operated in closed circuit mode. This value was much higher than the natural die-off rate of FCs in raw wastewater which was 1.16 d-1. Simultaneous bioelectricity monitoring inferred that voltage generation can be correlated to faster FC inactivation, which was probably due to EABs outcompeting other exogenous microbes in a preferable anaerobic environment with the presence of an anode. Reactor R2 was found to be functioning as a symbiotic bio-electrochemical mesocosm.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Bactérias Gram-Negativas , Bactérias , Áreas Alagadas , Eletrodos , Eletricidade
3.
Ecotoxicol Environ Saf ; 267: 115643, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944462

RESUMO

Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.


Assuntos
Fontes de Energia Bioelétrica , Elétrons , Eletrodos , Transporte de Elétrons
4.
J Environ Manage ; 347: 119050, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751664

RESUMO

Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 €/m3 wastewater according to a simplified economic evaluation.


Assuntos
Fontes de Energia Bioelétrica , Animais , Fontes de Energia Bioelétrica/microbiologia , Nitrogênio/metabolismo , Eletricidade , Águas Residuárias , Bactérias/metabolismo , Hidrogênio , Eletrodos
5.
ISA Trans ; 143: 398-408, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690942

RESUMO

A microbial fuel cell (MFC), which is a new type of energy source, utilises electrogenic bacteria in sewage or soil to convert chemical energy into electrical energy. MFCs typically require an external controller to provide a stable output voltage to the external load. This study develops a non-fragile guaranteed cost (NFGC) controller to suppress the interference of the controller of an MFC and ensure that the quadratic cost function of the system satisfies certain performance indexes. First, for the convenience of controller design, a Takagi-Sugeno fuzzy model is established to approximate a single-chamber single-population MFC model. Subsequently, the linear matrix inequality method is used to design the NFGC controller. This control scheme can reduce the influence of controller disturbances on the system and ensure asymptotic stability of the closed-loop system under the specified upper bound of the provided cost function. The simulation results demonstrate that the developed control method has a shorter adjustment time and smaller steady-state error than traditional control methods such as sliding mode control (SMC), backstepping control, and fuzzy SMC.


Assuntos
Fontes de Energia Bioelétrica , Lógica Fuzzy , Simulação por Computador , Algoritmos , Eletricidade
6.
Sci Total Environ ; 904: 166510, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619737

RESUMO

Reliable monitoring of microbial and water quality parameters in freshwater ecosystems (either natural or human-made) is of capital importance for improving both the management of water resources and the assessment of microbially-driven bio-geo-chemical processes. In this context, bioelectrochemical systems (BES), such as microbial three-cell electrodes (M3C), are very promising devices for their use as biosensors. However, current experiences on the use of BES-based devices for biosensing purposes are almost exclusively limited to water-saturated environments. This limitation hampers the use of this technology for a wider range of applications where the biosensor may work discontinuously (such as discontinuously saturated ecosystems). Discontinuous operation of M3C-based biosensors creates an electric current peak immediately after the reconnection of the system due to electron accumulation, in a process known as biocapacitance. The present work aimed at quantifying the bioindication potential of biocapacitance for the assessment of key ecosystem parameters such as microbial metabolic activity and biomass, as well as organic matter concentration. Significant linear regression coefficients (R2 > 0.9) were found for all combinations of parameters tested. Moreover, for most of the ecological parameters assessed, an electric charge accumulation of 1-5 min (biocapacitance elapsed time) and discharge of 5 min was enough to get reliable information. In conclusion, we have demonstrated for the first time that biocapacitance in M3C-based biosensors can be used as a proxy parameter for the assessment of microbial activity, microbial biomass and organic matter concentration in a model nature-based ecosystem.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Humanos , Ecossistema , Eletricidade
7.
Environ Sci Pollut Res Int ; 30(39): 90547-90573, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480542

RESUMO

Sustainable development and energy security, highlighted by the United Nations Sustainable Development Goals (SDGs), necessitate the use of renewable and sustainable energy sources. However, upon careful evaluation of literature, we have discovered that many existing and emerging renewable energy systems (RESs) prioritize renewability over true sustainability. These systems not only suffer from performance inconsistencies and lack of scalability but also fall short in fully embodying the principles of sustainability and circular economy. To address this gap, we propose considering microbial fuel cells (MFCs) as a viable alternative and integral part of the renewable energy ecosystem. MFCs harness the omnipresence, abundance, and cost-effectiveness of their essential components, making them a promising candidate. Through our comprehensive analysis, we shed light on the limitations and advancements of this technology, which underscore the remarkable potential of MFCs to revolutionize our perception of clean, sustainable energy.


Assuntos
Fontes de Energia Bioelétrica , Ecossistema , Fontes Geradoras de Energia , Energia Renovável , Desenvolvimento Sustentável
8.
Water Res ; 241: 120139, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270949

RESUMO

Microbial electrolysis cells (MECs) have demonstrated high-rate H2 production while concurrently treating wastewater, but the transition in scale from laboratory research to systems that can be practically applied has encountered challenges. It has been more than a decade since the first pilot-scale MEC was reported, and in recent years, many attempts have been made to overcome the barriers and move the technology to the market. This study provided a detailed analysis of MEC scale-up efforts and summarized the key factors that should be considered to further develop the technology. We compared the major scale-up configurations and systematically evaluated their performance from both technical and economic perspectives. We characterized how system scale-up impacts the key performance metrics such as volumetric current density and H2 production rate, and we proposed methods to evaluate and optimize system design and fabrication. In addition, preliminary techno-economic analysis indicates that MECs can be profitable in many different market scenarios with or without subsidies. We also provide perspectives on future development needed to transition MEC technology to the marketplace.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Hidrogênio , Eletrólise , Tecnologia
9.
Chemosphere ; 337: 139348, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37379989

RESUMO

In this article, the optimal design of a novel multi-generation system for the production of electricity, cooling, heat and freshwater is discussed. In this system, a Proton exchange membrane fuel cell (PEM FC) is used to generate electricity, and the heat produced by it is absorbed by the Ejector Refrigeration Cycle (ERC) and used to provide cooling and heating capacity. A reverse osmosis (RO) desalination system is also used to supply freshwater. The esign variables in this research are operating temperature and pressure and current density of FC, as well as the operating pressure of the HRVG, evaporator, and condenser of the ERC system. In order to optimize the considered system, the exergy efficiency and total cost rate (TCR) of the system are considered as optimization objective functions. To this end, the genetic algorithm (GA) is used and the Pareto front is extracted. Also, three refrigerants R134a, R600 and R123 areused as ERC system refrigerant and their performance are evaluated. Finally, the optimal design point is selected. At the mentioned point, the exergy efficiency is 70.2% and the TCR of the system is 1.78 S/h.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Temperatura , Temperatura Baixa , Receptores de Antígenos de Linfócitos T
10.
Environ Sci Pollut Res Int ; 30(35): 84141-84151, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37355514

RESUMO

Microbial-mineral interaction has a broad application prospect in the field of environmental remediation of organic pollutants. However, the disadvantages of long repair cycle and low repair rate limit its industrial application. In this study, natural hematite was used as an auxiliary material for soil remediation in a bio-electrochemical system. It was found that the power density of soil microbial fuel cell (SMFC) system composed of 2.0 mm hematite was 2.889 mW/m2, which is 2.7 times compared with the blank group (1.068 mW/m2) in the particle size optimization experiment. A similarly increased power density (1.068 to 2.467 mW/m2) was observed when the hematite content changed from 0 to 20% in the concentration optimization experiment. Under 20% and 2.0-mm hematite condition, the phenol removal rate was closed to 99% after 7 days, which is 1.9-folds compared with blank control (53%). These results suggest that addition of hematite enhances soil porosity and conductivity, and increases the number of electron acceptors in soil. These findings inspire that this economic and abundant natural mineral is expected to be a potential auxiliary material in the field of soil organic pollutant purification, and expand the understanding of interactions between hematite and microorganisms in nature.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo/química , Compostos Férricos , Poluentes do Solo/análise , Minerais
11.
Environ Res ; 231(Pt 2): 116143, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187304

RESUMO

Microbial fuel cells (MFCs) have been the prime focus of research in recent years because of their distinctive feature of concomitantly treating and producing electricity from wastewater. Nevertheless, the electrical performance of MFCs is hindered by a protracted oxygen reduction reaction (ORR), and often a catalyst is required to boost the cathodic reactions. Conventional transition metals-based catalysts are expensive and infeasible for field-scale usage. In this regard, carbon-based electrocatalysts like waste-derived biochar and graphene are used to enhance the commercialisation prospects of MFC technology. These carbon-catalysts possess unique properties like superior electrocatalytic activity, higher surface area, and high porosity conducive to ORR. Theoretically, graphene-based cathode catalysts yield superior results than a biochar-derived catalyst, though at a higher cost. In contrast, the synthesis of waste-extracted biochar is economical; however, its ability to catalyse ORR is debatable. Therefore, this review aims to make a side-by-side techno-economic assessment of biochar and graphene-based cathode catalyst used in MFC to predict the relative performance and typical cost of power recovery. Additionally, the life cycle analysis of the graphene and biochar-based materials has been briefly discussed to comprehend the associated environmental impacts and overall sustainability of these carbo-catalysts.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Análise Custo-Benefício , Carbono , Eletrodos , Catálise , Oxigênio
12.
Bioresour Technol ; 382: 129193, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207698

RESUMO

Microfluidic microbial fuel cell has lower costs and greater potential than typical microbial fuel cell due to the elimination of proton exchange membrane. However, the development has mostly relied on experiments, and there has been little research on numerical simulations. Based on experimental validation, a reliable and universal model for microfluidic microbial fuel cell without quantifying the biomass concentration is proposed. Subsequently, the primary work is to study the output performance and energy efficiency of the microfluidic microbial fuel cell under different operating conditions and to comprehensively optimize the cell performance by employing the multi-objective particle swarm algorithm. Compared the optimal case with the base case, the increase ratios of maximum current density, power density, fuel utilization and exergy efficiency are 40.96%, 20.87%, 61.58% and 32.19%, respectively. On the basis of improving energy efficiency, the maximum power density and current density can reach 1.193 W/m2 and 3.51 A/m2.


Assuntos
Fontes de Energia Bioelétrica , Microfluídica , Eletricidade , Eletrodos , Biomassa
13.
Environ Res ; 231(Pt 2): 116159, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211179

RESUMO

Microbial fuel cell (MFC) operation under similar conditions to conventional methods will support the use of this technology in large-scale wastewater treatment. The operation of scaled-up air-cathode MFC (2 L) fed with synthetic wastewater (similar to domestic) in a continuous flow was evaluated using three different hydraulic retention times (HRT), 12, 8, and 4 h. We found that electricity generation and wastewater treatment could be enhanced under an HRT of 12 h. Additionally, the longer HRT led to greater coulombic efficiency (5.44%) than MFC operating under 8 h and 4 h, 2.23 and 1.12%, respectively. However, due to the anaerobic condition, the MFC was unable to remove nutrients. Furthermore, an acute toxicity test with Lactuca sativa revealed that MFC could reduce wastewater toxicity. These outcomes demonstrated that scaled-up MFC could be operated as a primary effluent treatment and transform a wastewater treatment plant (WWTP) into a renewable energy producer.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias/toxicidade , Eletricidade , Purificação da Água/métodos , Eletrodos
14.
Bioresour Technol ; 376: 128906, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933575

RESUMO

Newly arising concepts such as the circular economy and carbon neutrality motivate resource recovery from wastewater. This paper reviews and discusses state-of-the-art microbial electrochemical technologies (METs), specifically microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial recycling cells (MRCs), which enable energy generation and nutrient recovery from wastewater. Mechanisms, key factors, applications, and limitations are compared and discussed. METs are effective in energy conversion, demonstrating advantages, drawbacks and future potential as specific scenarios. MECs and MRCs exhibited greater potential for simultaneous nutrient recovery, and MRCs offer the best scaling-up potential and efficient mineral recovery. Research on METs should be more concerned with lifespan of materials, secondary pollutants reduction and scaled-up benchmark systems. More up-scaled application cases are expected for cost structures comparison and life cycle assessment of METs. This review could direct the follow-up research, development and successful implementation of METs for resource recovery from wastewater.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Carbono , Eletrólise , Tecnologia
15.
Environ Pollut ; 323: 121274, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804140

RESUMO

Wastewater management has emerged as an uprising concern that demands immediate attention from environmentalists worldwide. Indiscriminate and irrational release of industrial and poultry wastes, sewage, pharmaceuticals, mining, pesticides, fertilizers, dyes and radioactive wastes, contribute immensely to water pollution. This has led to the aggravation of critical health concerns as evident from the uprising trends of antimicrobial resistance, and the presence of xenobiotics and pollutant traces in humans and animals due to the process of biomagnification. Therefore, the development of reliable, affordable and sustainable technologies for the supply of fresh water is the need of the hour. Conventional wastewater treatment often involves physical, chemical, and biological processes to remove solids from the effluent, including colloids, organic matter, nutrients, and soluble pollutants (metals, organics). Synthetic biology has been explored in recent years, incorporating both biological and engineering concepts to refine existing wastewater treatment technologies. In addition to outlining the benefits and drawbacks of the current technologies, this review addresses novel wastewater treatment techniques, especially those using dedicated rational design and engineering of organisms and their constituent parts. Furthermore, the review hypothesizes designing a multi-bedded wastewater treatment plant that is highly cost-efficient, sustainable and requires easy installation and handling. The novel setup envisages removing all the major wastewater pollutants, providing water fit for household, irrigation and storage purposes.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Análise Custo-Benefício , Esgotos/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise
16.
Environ Sci Pollut Res Int ; 30(16): 45872-45887, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36707477

RESUMO

Field-scale application of the microbial fuel cell (MFC) technology faces a major constraint due to the widely used high-cost proton exchange membrane Nafion, prompting lately, the development of ceramic membranes using different clay minerals. In the present study, the characteristics and applicability of a novel ceramic membrane fabricated using potter's clay (C) blended with varying proportions (0, 5, 10, and 20 wt%) of fly ash (FA), designated as CFA0, CFA5, CFA10, and CFA20, were assessed for cost-effective and sustainable use in MFC. On assessing the properties of the membrane, CFA10 was found to exhibit superior quality with fine pore size distribution (average 0.49 µm) favoring higher water uptake and less oxygen diffusion. The CFA10 membrane showed a maximum proton mass transfer coefficient (4.32 ± 0.04 × 10-5 cm/s) that was about three times that of the control CFA0. The oxygen mass transfer coefficient of CFA10 was 5.13 ± 0.12 × 10-5 cm/s, which was about 40% less than in the control. X-ray diffraction (XRD) analysis of CFA membrane revealed the richness of quartz, which facilitates proton conductance and water retention. The CFA10 membrane fitted MFC demonstrated a peak power output of 4.57 W/m3 (twice that in CFA0) with an average of 80.02 ± 0.86% COD removal and 68.03 ± 0.13% coulombic efficiency in a long-term study indicating its improved applicability and durability. Electrochemical kinetics involving cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) also affirmed the efficacy of CFA10 membrane in MFC showing peak current output of 13.95 mA and low ohmic resistance (74.2 Ω). The novel (CFA10) ceramic membrane amalgamated with the coal fly ash, a waste of concern, shows promise for high MFC performance at a much reduced (98% less) cost that can be used for sustainable scale-up of the technology.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Cinza de Carvão , Prótons , Argila , Cerâmica , Oxigênio/química , Eletrodos
17.
Biosens Bioelectron ; 220: 114888, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410156

RESUMO

In order to address the need for long-term, in-situ and inexpensive monitoring of dissolved oxygen (DO), a chitin-carrying microbial fuel cell (MFC) based DO sensor was developed using sediment anolyte, which had an extremely low cost of US$12.17 and comparable performance to certain commercial sensors. The MFC based DO sensor had a long lifetime of over half a year with chitin as the fuel, attributed to the syntrophic interactions between fermentative and exoelectrogenic microbes that were well developed for chitin degradation in anaerobic condition with sediment filling in the anode chamber. The use of sediment anolyte introduced hindered diffusion in the porous media, enabling the use of glass fiber as the separator to replace the ion exchange membrane and thus resulting in a much lower cost. Field tests of this MFC based DO sensor were conducted in fresh and saline waters respectively. Excellent performance was achieved with average deviations of <4.5% to three commercial methods of fiber optic sensor (HQ40d, HACH company, USA), Clark type sensor (Pro20i, YSI company, USA) and iodometry. This low-cost MFC sensor also showed a high reliability, with the same response of current generation to different DO levels in random 17-times tests, indicating its great market potentials for in-situ DO monitoring.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Oxigênio , Reprodutibilidade dos Testes , Quitina
18.
Sci Total Environ ; 857(Pt 3): 159671, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36280066

RESUMO

Researchers are still trying to achieve desirable results while treating actual wastewater at the field size when scaling up a microbial fuel cell (MFC). This pilot-scale project aimed to create a decentralised system for treating domestic wastewater and concurrent energy generation that may be used as a model for the decentralisation process. In this investigation, a cylindrical-shaped earthen membrane was utilized. The arrangement was deployed on-site at a residence for the treatment of domestic wastewater as well as simultaneous generation of power. From August until November 2021, the 36 L pilot-scale setup was operational for a period of 92 days. The setup's performance was affected by seasonal temperature variations during the operation period. The system's performance was measured in terms of COD, nitrate, and NH3-N removal, with the highest results being 93.52 %, 84.93 %, and 74.78 %, respectively. The pilot-scale setup achieved the highest current of 43.7 mA, and the output voltage of the setup was boosted to 4.1 V using a power management system. The sustainable operation of pilot household MFC showed a positive indication for field application with a low-cost solution.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias , Eletricidade , Purificação da Água/métodos , Compostos Orgânicos , Eletrodos
19.
Chemosphere ; 313: 137507, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495975

RESUMO

Increasing use of phosphorus products and excessive exploitation of phosphorus resources become two major problems in perspective of phosphorus sustainable development. Phosphorus recovery is the shortcut to solve this dilemma. Combining electrochemistry, an iron-air fuel cell was adopted to recover phosphate and electricity from phosphate-containing wastewater in our previous studies. The present study focused on investigating the effects of catholyte/anolyte conductivity, external resistance, and anolyte pH on the performance of iron-air fuel cell, and obtaining the optimized conditions. Furthermore, the electrochemical methods of phosphate recovery were compared and assessed, and it is concluded that iron-air fuel cell has great potential for energy recovery. The phosphate removal efficiencies and vivianite yield roughly positively correlated with the catholyte conductivity and the anolyte pH, but negatively correlated with the external resistance and the anolyte conductivity. The electricity generation roughly positively correlated with the catholyte conductivity and anolyte conductivity, but showed limitations in the test range of anolyte pH and external resistance. To pursue high phosphate removal efficiencies and vivianite yield, the catholyte conductivity, external resistance, anolyte pH and anolyte conductivity were suggested to be 35 g-NaCl/L, 10 Ω, 8 and 0 g-NaCl/L. While if electricity generation was the primary goal, these parameters should be 35 g-NaCl/L, 220 Ω, 5 and 70 g-NaCl/L. The optimized conditions will help to improve the phosphate removal efficiency, vivianite yield and electricity generation, and to promote the development of iron-air fuel cell technology.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Ferro , Cloreto de Sódio , Desenvolvimento Sustentável , Eletricidade , Fosfatos , Fósforo , Eletrodos
20.
Environ Technol ; 44(18): 2713-2724, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35138220

RESUMO

The separator is an important component of the microbial fuel cells (MFCs), which separates anode and cathode entities and facilitates ion transfer between both. Despite the high research in separators in recent years, the need for cost-effective, waste-driven selective separators in MFCs persists. Present study discloses the strategic fabrication of functionalized-tea-waste-ash-clay (FTWA-C) composite separator by integrating functionalized tea waste ash (FTWA) with potter's clay. Clay was used as a base, while FTWA was used as cation exchanger. FTWA and clay were separately mixed in four different ratios, 00:100 (C1); 05:95 (C2); 10:90 (C3); 15:85 (C4). Mixtures were then crafted manually as consecutive four layers. C1-side faced anode while separator-cathode-assembly was developed at C4. The separator was characterized by evaluating proton and oxygen transfer coefficient, and water-uptake analysis. The separator was also analysed for elemental composition, microstructure, particle size, and surface area and porous structure. SEM analysis of FTWA showed the presence of 15-100 nm pores. EDS analysis of the FTWA-C showed the presence of hygroscopic oxides, mainly SO42- and SiO2. A slight peak observed at P/Po∼1, confirmed the presence of macropores. The FTWA-C separator showed proton transfer coefficient as high as 18.7 × 10-5 cm/s, and oxygen mass transfer coefficient of 2.1 × 10-4 cm/s. The FTWA-C displayed the highest operating voltage of 612.4.2 mV, the power density of 1.81 W/m3, and COD removal efficiency of 87.52%. The fabrication cost of this separator was estimated to be $9.8/m2. FTWA-C could be an affordable and high-efficiency alternative for expensive ion-exchange membranes in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Argila , Prótons , Dióxido de Silício , Eletrodos , Oxigênio , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA